27

PURDUE

UNIVERSITY.

3. Design

adding parallelism!

1. Background

Elmore Family School of Electrical
and Computer Engineering

Optimizing
Gradual CO

At a branching point, copy the state and verifier, then execute

two branches in parallel.

e nheed to maintain the information (e.g., declaration and assumption)
In the verifier,

e follow the parallel design of Viper [3], but garbage-collect such info
to reduce the overhead.

Gradual CO (GCO) [1] is a gradual program verifier for heap data
structures for the CO language. GCO combines static and run-time
verification.

GCO'’s static verifier uses symbolic execution to verify each
function. Thus, it forks execution at each branch point in a function.

state, verifier

@ fork
state, verifier state', verifier’

then branch else branch

2. Analysis g g

By analyzing the verification procedure on cparser.cO, we find that
over 97% of the time is spent on function declspec, where

e thereare 571 paths in total,

e paths are executed sequentially,

o >73% of paths are executed within 0.6 s.

The static verification of GCO suffers from slowness on a

comparatively large program.
e e.g.,~1min 20s oncparser.cO [2] with ~3000 LOC.

Program
Verifier

Overview of enabling parallelism at the branching point

4. Evaluation other bottlenecks?

. o Static Verification time reduces as more parallelism is enabled,
Advisor: Dr. Jenna DiVincenzo Sl A but it doesn’t scale well with the number of parallel verifiers.

Wen Fan (fan372@purdue.edu)

executed

false 3

Eye .. |executing on many

OVE RVIEW /A\z paths sequentially
i l”\l_

Prior work on Gradual CO [2] showed =
preliminary evidence of bottlenecks ~]

Static Performance with Increasing Number of Parallel Verifiers

100

~
a

a1
o

Avg Static Verification Time (s)

n n n gum n 25

in the static verification performance 81 o 20 g

of Gradual CO. In this work, we 1){ y ; | B | R

. o Sl s P tok l:nI(OE next ret%%rigﬁosrd . = . 16

investigate bottlenecks further, and 16 o/ a4 ¥ 20 2

. I t " I 8 A%\\ #parallel verifiers for branching (#processors = 16)

|mp. er_nen. para .e ISM dsS dn 13 branches X

optimization motivated by our T Reference:

investigation The evaluation shows —uniod [1] DiVincenzo, Jenna, et al. "Gradual C0O: Symbolic Execution for Gradual
” B) "~ - Verification." arXiv preprint arXiv:2210.02428 (2022).

perrormance IS Improved wit | e [2] DiVincenzo, Jenna Wise. Gradual Verification of Recursive Heap Data

parallelism.

Function declspec in cparser.cO, with 571 paths in symbolic execution (red
number shows the number of paths executed on the basic block)

Structures. Diss. Carnegie Mellon University, 2023.
[3] Schwerhoff, Malte H. Advancing automated, permission-based program
verification using symbolic execution. Diss. ETH Zurich, 2016.

mailto:fan372@purdue.edu

