27

PURDUE

UNIVERSITY.

3. Design

adding parallelism!

1. Background
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At a branching point, copy the state and verifier, then execute

two branches in parallel.

e nheed to maintain the information (e.g., declaration and assumption)
In the verifier,

e follow the parallel design of Viper [3], but garbage-collect such info
to reduce the overhead.

Gradual CO (GCO) [1] is a gradual program verifier for heap data
structures for the CO language. GCO combines static and run-time
verification.

GCO'’s static verifier uses symbolic execution to verify each
function. Thus, it forks execution at each branch point in a function.

state, verifier

@ fork
state, verifier state', verifier’

then branch else branch

2. Analysis g g

By analyzing the verification procedure on cparser.cO, we find that
over 97% of the time is spent on function declspec, where

e thereare 571 paths in total,

e paths are executed sequentially,

o >73% of paths are executed within 0.6 s.

The static verification of GCO suffers from slowness on a

comparatively large program.
e e.g.,~1min 20s oncparser.cO [2] with ~3000 LOC.

Program
Verifier

Overview of enabling parallelism at the branching point

4. Evaluation other bottlenecks?

. o Static Verification time reduces as more parallelism is enabled,
Advisor: Dr. Jenna DiVincenzo Sl A but it doesn’t scale well with the number of parallel verifiers.
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Prior work on Gradual CO [2] showed =
preliminary evidence of bottlenecks ~ ]
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