
Reference:
[1] DiVincenzo, Jenna, et al. "Gradual C0: Symbolic Execution for Gradual
Verification." arXiv preprint arXiv:2210.02428 (2022).
[2] DiVincenzo, Jenna Wise. Gradual Verification of Recursive Heap Data
Structures. Diss. Carnegie Mellon University, 2023.
[3] Schwerhoff, Malte H. Advancing automated, permission-based program
verification using symbolic execution. Diss. ETH Zurich, 2016.

OVERVIEW

Optimizing
Gradual C0
Program
Verifier

1. Background
Gradual C0 (GC0) [1] is a gradual program verifier for heap data
structures for the C0 language. GC0 combines static and run-time
verification.

GC0’s static verifier uses symbolic execution to verify each
function. Thus, it forks execution at each branch point in a function.

The static verification of GC0 suffers from slowness on a
comparatively large program.
● e.g., ~1 min 20s on cparser.c0 [2] with ~3000 LOC.

4. Evaluation

3. Design

Prior work on Gradual C0 [2] showed
preliminary evidence of bottlenecks
in the static verification performance
of Gradual C0. In this work, we
investigate bottlenecks further, and
implement parallelism as an
optimization motivated by our
investigation. The evaluation shows
performance is improved with
parallelism.

Function declspec in cparser.c0, with 571 paths in symbolic execution (red
number shows the number of paths executed on the basic block)

2. Analysis
By analyzing the verification procedure on cparser.c0, we find that
over 97% of the time is spent on function declspec, where
● there are 571 paths in total,
● paths are executed sequentially,
● > 73% of paths are executed within 0.6 s.

At a branching point, copy the state and verifier, then execute
two branches in parallel.
● need to maintain the information (e.g., declaration and assumption)

in the verifier,
● follow the parallel design of Viper [3], but garbage-collect such info

to reduce the overhead.

adding parallelism!

executing on many
paths sequentially

Overview of enabling parallelism at the branching point

Static Verification time reduces as more parallelism is enabled,
but it doesn’t scale well with the number of parallel verifiers.

other bottlenecks?Wen Fan (fan372@purdue.edu)

Advisor: Dr. Jenna DiVincenzo

mailto:fan372@purdue.edu

